Martin-Luther-Universität Halle-Wittenberg

Weiteres

Login für Redakteure

Prof. Dr. Erwin Suess

Prof. Suess

Prof. Suess

Prof. Dr. Erwin Suess

Leibniz Research Center for Marine Geosciences Kiel
Director KDM German Marine Research Consortium Berlin

Homepage   
esuess@ifm-geomar.de


Resarch Focus

Production, decomposition, and burial of organic material in the ocean
Reconstruction of ocean productivity and convergent margin tectonics
Gas hydrates in the Earth’s system
Volatile recycling through subduction zones
Subduction zone earthquakes and tsunami generation

Selected Publications

Suess, E., G. Bohrmann, J. Greinert, and E. Lausch, 1999. Le méthane dans les océans. (French edition). Pour la Science, 264: 80-89.

Suess, E., G. Bohrmann, J. Greinert, and E. Lausch, 2000. Flammable ice. (Japanese edition). Nikkei Science, 3: 74-89.

Suess, E., M. E. Torres, G. Bohrmann, R. W. Colliet, D. Rickert, C. Goldfinger, P. Linke, A. Heuser, H. Sahling, K. Heeschen, C. Jung, K. Nakamura, J. Greinert, O. Pfannkuche, A. Trehu, G. Klinkhammer, M. J. Whiticar, A. Eisenhauer, B. Teichert, and M. Elvert, 2001. Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin. In: C. Paull and W. Dillon (eds.) Natural Gas Hydrates: Occurrence, Distribution, and Detection, Washington, American Geophysical Union, Monograph Series 124: 87-98.

Karpen, V., Thomsen, L., and Suess, E. (2003). A new “schlieren” technique application for fluid flow visualization at cold seep sites. Marine Geology, 3442: pp. 15.

Johnson, J. E., Goldfinger, C., and Suess, E. (2003). Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Marine Geology, 202: 79-120.

Boetius, A., and Suess, E. (2004). Hydrate Ridge: A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology Special issue: Geomicrobiology and Biogeochemistry fo Gas Hydrates and Hydrocarbon Seeps: Guest editors: C. Zhang and B. Lanoil, Chemical Geology, 205: 291-310.

Hensen, C., Wallmann, K. Schmid. M., Ranero, C. R., and Suess, E. (2004). Fluid expulsion related to mud extrusion off Costa Rica. A window to the subduction slab. Geology, 32 (2): 201-204.

Special Offer

Coordination: Ocean and Seafloor Instrumentation
Indonesian-German Tsunami Early Warning System

Congress-Abstract

地球システムにおけるガスハイドレード—ドイツ地質工学イニシアチブ—

天然ガスハイドレードが、海成堆積層、永久凍土層、および大陸の氷床において、地球規模で発生している。ガスハイドレードとは、天然のガス分子、とりわけメタン分子が水分子の格子空間に入り込んで形成される氷状の固体化合物である。ハイドレード堆積物の最大のものは、大陸縁辺部に沿った沖にある。天然のメタンハイドレードに関する研究は、現在、世界的に興味あるトピックの一つである。
ドイツ教育省の支援を受けた長期イニシアチブでは、以下のことが扱われている。すなわち、(1)海洋ガスハイドレード環境におけるメタンフラックスのコントロールとその気候上の関連、(2)微生物代謝によるメタン分解とその作用、(3)選定された地質構造でのガスハイドレード蓄積量の数量化とその動的反応、そして、(4)実験的・自然的ガス水ハイドレード・システムの地質工学的・物理的特性、である。

Gas Hydrates in the Earth’s System: a German Geotechnology Initiative

Natural gas hydrates occur globally in marine sediments, in permafrost regions and in the continental ice sheets. Gas hydrates are ice-like solid compounds whereby water molecules trap molecules of natural gases, mostly methane. The largest hydrate deposits are found offshore along continental margins. Research on natural methane hydrates is currently a topic of world wide interest. A long-term initiative funded by the German Ministry of Education and Research, several highlights of which will be presented, addresses:
(1) The controls on methane fluxes and their climate relevance in marine gas hydrate environments; (2) the methane and hydrate turnover by microbial metabolism; (3) the quantification and behaviour of gas hydrate reservoirs in selected structuraltectonic settings; and (4) the geotechnical and physical properties of experimental and natural gas-water-hydrate systems.

Zum Seitenanfang